Blog Archive

Sunday, November 29, 2009

Timothy J. Garrett, Climatic Change (Nov. 2009), Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?

Climatic Change (November 21, 2009), DOI: 10.1007/s10584-009-9717-9

Timothy J. Garrett* (Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, U.S.A.)

Received 12 November 2008; accepted 27 August 2009; published online 21 November 2009.

Abstract

Global Circulation Models (GCMs) provide projections for future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions scenarios as input, each based on the evolution of four emissions “drivers”: population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c (IPCC WG III 2007). The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty (Stott and Kettleborough, Nature 416:723–725, 2002). Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production—or p×g—through a time-independent factor of 9.7±0.3 mW per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.

*e-mail:  tim.garrett@utah.edu

Link to abstract and free, open-access pdf file:  http://www.springerlink.com/content/9476j57g1t07vhn2/

Link to free, open-access pdf file of complete article:  http://www.springerlink.com/content/9476j57g1t07vhn2/fulltext.pdf

No comments: