Blog Archive

Tuesday, June 14, 2011

A blast from the past: Kerry Emanuel's "Phaeton's Reins" from 2007 still current; "As long as we continue to elect scientific illiterates like James Inhofe, who believes global warming to be a hoax, we will lack the ability to engage in intelligent debate." (Emanuel refers to the debate on how to solve the problem)

"Phaeston's Reins" by Kerry Emanuel
Emanuel
Dr. Kerry Emanuel, MIT


(Kerry Emanuel is a professor of meteorology at MIT and the author of Divine Wind: The History and Science of HurricanesIn 2006 Time magazine recognized him as one of the world’s 100 most influential people. He is politically conservative -- in the old sense of the word. For those of you who don't know who Phaeton was:  http://en.wikipedia.org/wiki/Pha%C3%ABton)

[I am beginning this post in the middle of the article. Go to the link below to see the figure -- but to make a long story short, the red line goes up and the blue line doesn't much.]

The figure above shows the results of two sets of computer simulations of the global average surface temperature of the 20th century using a particular climate model. In the first set, denoted by blue, only natural, time-varying forcings are applied; these consist of variable solar output and “dimming” owing to aerosols produced by known volcanic eruptions. The second set (in red) adds in the man-made influences on sulfate aerosols and greenhouse gases. In each set, the model is run four times beginning with slightly different initial states, and the range among the four ensemble members is denoted by the shading in the figure, reflecting the free random variability of the climate produced by this model, while the colored curves show the average of the four ensemble members. The observed global average surface temperature is depicted by the black curve. One observes that the two sets of simulations diverge during the 1970s and have no overlap at all today, and that the observed global temperature also starts to fall outside the envelope of the all natural simulations in the 1970s. This exercise has been repeated using many different climate models, with the same qualitative result: one cannot simulate the evolution of the climate over last 30 years without including in the simulations mankind’s influence on sulfate aerosols and greenhouse gases. This, in a nutshell, is why almost all climate scientists today believe that man’s influence on climate has emerged from the background noise of natural variability.

The consequences


Projections based on climate models suggest that the globe will continue to warm another 3-7 °F over the next century. This is similar to the temperature change one could experience by moving, say, from Boston to Philadelphia. Moreover, the warming of already hot regions—the tropics—is expected to be somewhat less, while the warming of cold regions like the arctic is projected to be more, a signal already discernable in global temperature measurements. Nighttime temperatures are increasing more rapidly than daytime warmth. [The latest data through April 2011 show that this is accelerating.]

Is this really so bad? In all the negative publicity about global warming, it is easy to overlook the benefits: It will take less energy to heat buildings, previously infertile lands of high latitudes will start producing crops, and there will be less suffering from debilitating cold waves. Increased CO2 might also make crops grow faster. On the down side, there will be more frequent and more intense heat waves, air conditioning costs will rise, and previously fertile areas in the subtropics may become unarable. Sure, there will be winners and losers, but will the world really suffer in the net? Even if the changes we are bringing about are larger than the globe has experienced in the last few thousand years, they still do not amount to the big natural swings between ice ages and interglacial periods, and the earth and indeed human beings survived these.

But there are consequences of warming that we cannot take so lightly. During the peak of the last ice age, sea level was some 400 feet lower than today’s, since huge quantities of water were locked up in the great continental ice sheets. As polar regions warm, it is possible that portions of the Greenland and Antarctic ice sheets will melt, increasing sea level. Highly detailed and accurate satellite-based measurements of the thickness of the Greenland ice show that it is actually increasing in the interior but thinning around the margins, and while there are also patterns of increase and decrease in Antarctic ice, it appears to be thinning on the whole. Meltwater from the surface of the Greenland ice sheet is making its way to the bottom of the ice, possibly allowing the ice to flow faster toward the sea. Our understanding of the physics of ice under pressure is poor, and it is thus difficult to predict how the ice will respond to warming. Were the entire Greenland ice cap to melt, sea level would increase by around 22 feet—flooding many coastal regions including much of southern Florida and lower Manhattan.



My own work has shown that hurricanes are responding to warming sea surface temperatures faster than we originally expected, especially in the North Atlantic, where the total power output by tropical cyclones has increased by around 60% since the 1970s. The 2005 hurricane season was the most active in the 150 years of records, corresponding to record warmth of the tropical Atlantic. Hurricanes are far and away the worst natural disasters to affect the U.S. in economic terms. Katrina may cost us as much as $200 billion, and it has claimed at least 1,200 lives. Globally, tropical cyclones cause staggering loss of life and misery. Hurricane Mitch of 1998 killed over 10,000 people in Central America, and in 1970 a single storm took the lives of some 300,000 people in Bangladesh. Substantial changes in hurricane activity cannot be written off as mere climate perturbations to which we will easily adjust.

Basic theory and models show another consequential result of a few degrees of warming. The amount of water vapor in the air rises exponentially with temperature: a 7-degree increase in temperature increases water vapor by 25%. [OK, this shocked the hell outta me!  Currently, it is estimated that water vapor has increased by 4% and look at the havoc it has wreaked during the Extreme Spring of 2011.  An additional 21% sounds apocalyptic!] One might at first suppose that since the amount of water ascending into clouds increases, the amount of rain that falls out of them must increase in proportion. But condensing water vapor heats the atmosphere, and in the grand scheme of things, this must be compensated by radiative heat loss. On the other hand, simple calculations show that the amount of radiative heat loss increases only very slowly with temperature, so that the total heating by condensation must increase slowly as well. Models resolve this conundrum by making it rain harder in places that are already wet and at the same time increasing the intensity, duration, or geographical extent of droughts. Thus, the twin perils of flood and drought actually both increase substantially in a warmer world. [We have gotten a big dose of this in in 2010 and 2011 already.]

It is particularly sobering to contemplate such outcomes in light of the evidence that smaller, natural climate swings since the end of the last ice age debilitated and in some cases destroyed entire civilizations in such places as Mesopotamia, Central and South America, and the southwestern region of what is today the United States.

In pushing the climate so hard and so fast, we are also conscious of our own collective ignorance of how the climate system works. Perhaps negative-feedback mechanisms that we have not contemplated or have underestimated will kick in, sparing us from debilitating consequences [So far, all the uncontemplated feedbacks discovered during the years since this article was written have been negative.]. On the other hand, the same could be said of positive feedbacks, and matters might turn out worse than projected. The ice-core record reveals a climate that reacts in complex and surprising ways to smoothly and slowly changing radiative forcing caused by variations in the earth’s orbit. Far from changing smoothly, it remains close to one state for a long time and then suddenly jumps to another state. We do not understand this, and are worried that a sudden climate jump may be part of our future.


Science, politics, and the media


Science proceeds by continually testing and discarding or refining hypotheses, a process greatly aided by the naturally skeptical disposition of scientists. We are, most of us, driven by a passion to understand nature, but that means being dispassionate about pet ideas. Partisanship—whatever its source—is likely to be detected by our colleagues and to yield a loss of credibility, the true stock of the trade. We share a faith—justified by experience—that at the end of the day, there is a truth to be found, and those who cling for emotional reasons to wrong ideas will be judged by history accordingly, whereas those who see it early will be regarded as visionaries.


The evolution of the scientific debate about anthropogenic climate change illustrates both the value of skepticism and the pitfalls of partisanship. Although the notion that fossil-fuel combustion might increase CO2 and alter climate originated in the 19th century, general awareness of the issue dates to a National Academy of Sciences report in 1979 that warned that doubling CO2 content might lead to a 3-8 degree increase in global average temperature. Then, in 1988, James Hansen, the director of NASA’s Goddard Institute for Space Studies, set off a firestorm of controversy by testifying before Congress that he was virtually certain that a global-warming signal had emerged from the background climate variability. At that time, less was known about natural climate variability before the beginning of systematic instrumental records in the nineteenth century, and only a handful of global climate simulations had been performed.


Most scientists were deeply skeptical of Hansen’s claims; I certainly was. It is important to interpret the word “skeptical” literally here: it was not that we were sure of the opposite, merely that we thought the jury was out.

[I strongly disagree with Dr. Emanuel's take on what occurred next, so if you want to read it, you will have to go to the link.  However, I think it very likely that Dr. Emanuel's take on what actually occurred back in the 1980s and 1990s has likely changed as he received better and more accurate information on the machinations of the extremely well-funded right-wing faux think tanks.]

But I found this jewel later:

There are other obstacles to taking a sensible approach to the climate problem. We have preciously few representatives in Congress with a background or interest in science, and some of them display an active contempt for the subject. As long as we continue to elect scientific illiterates like James Inhofe, who believes global warming to be a hoax, we will lack the ability to engage in intelligent debate.

And this:

Like it or not, we have been handed Phaeton’s reins, and we will have to learn how to control climate if we are to avoid his fate.

No comments: