Fluvial Geomorphology and Flood Hydrology:




The third set of mechanisms that can worsen flood disasters over time are engineering activities and structures in rivers and their floodplains. These mechanisms do not typically result in increased flood flows (discharges), but rather they decrease the conveyance capacity of the channel and thus result in higher water-surface elevations (stages). These mechanisms can be subdivided into: (1) channelization and other navigation-improvement activities, and (2) levee construction and other flood-control activities. On the Missouri River, channelization during the past ~100 years has been repeatedly linked to channel capacity losses. At measurement stations spanning >1000 km from the lower Missouri to the middle Mississippi rivers, increases of up to 3-4 m have been linked to the construction of navigational engineering structures and levees. On the Rhine River, numerical modeling by the Dutch government has shown that navigational groins (wing dams) increase flood stages and that groin lowering can be an effective tool for significantly lowering flood levels.
Selected Papers
Pinter, N., B.S. Ickes, and J.H. Wlosinski, in press. Contrasting trends in flooding on the Mississippi and Rhine river systems. Submitted to Journal of Hydrology.
Pinter, N., R.R. van der Ploeg, P. Schweigert, and G. Hoefer, 2006. Flood Magnification on the River Rhine. Hydrological Processes, 20: 147-164.
Pinter, N., 2005. Policy Forum: Floodplain encroachment since the 1993 flood. Science, 308: 207-208.
Pinter, N., and R.A. Heine, 2005. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. Journal of Hydrology, 302: 70-91.
Pinter, N., K. Miller, and J.H. Wlosinski, 2004. Recurrent shoaling and dredging on the Middle and Upper Mississippi River, USA. Journal of Hydrology, 290: 275-296.
Pinter, N., and R. Thomas, 2003. Engineering modifications and changes in flood behavior of the Middle Mississippi River. In R. Criss and D. Wilson, (eds.), At The Confluence: Rivers, Floods, and Water Quality in the St. Louis Region, pp. 96-114.
Pinter, N., R. Thomas, and J.H. Wlosinski, 2002. Reply to U.S. Army Corps of Engineers Comment on "Assessing flood hazard on dynamic rivers." Eos: Transactions of the American Geophysical Union, 83(36): 397-398.
Pinter, N., J.H. Wlosinski, and R. Heine, 2002. The case for utilization of stage data in flood-frequency analysis: Preliminary results from the Middle Mississippi and Lower Missouri River. Hydrologic Science and Technology Journal, 18(1-4): 173-185.
Pinter, N., R. Thomas, and J.H. Wlosinski, 2001. Flood-hazard assessment on dynamic rivers. Eos: Transactions of the American Geophysical Union, 82(31): 333-339.
No comments:
Post a Comment