Heating Imbalances
by NASA's Earth Observatory
Three hundred forty watts per square meter of incoming solar power is a global average; solar illumination varies in space and time. The annual amount of incoming solar energy varies considerably from tropical latitudes to polar latitudes (described on page 2). At middle and high latitudes, it also varies considerably from season to season.
If the Earth’s axis of rotation were vertical with respect to the path of its orbit around the Sun, the size of the heating imbalance between equator and the poles would be the same year round, and the seasons we experience would not occur. Instead Earth’s axis is tilted off vertical by about 23 degrees. As the Earth orbits the Sun, the tilt causes one hemisphere and then the other to receive more direct sunlight and to have longer days.
In the “summer hemisphere,” the combination of more direct sunlight and longer days means the pole can receive more incoming sunlight than the tropics, but in the winter hemisphere, it gets none. Even though illumination increases at the poles in the summer, bright white snow and sea ice reflect a significant portion of the incoming light, reducing the potential solar heating.
The differences in reflectivness (albedo) and solar illumination at different latitudes lead to net heating imbalances throughout the Earth system. At any place on Earth, the net heating is the difference between the amount of incoming sunlight and the amount heat radiated by the Earth back to space (for more on this energy exchange see Page 4). In the tropics there is a net energy surplus because the amount of sunlight absorbed is larger than the amount of heat radiated. In the polar regions, however, there is an annual energy deficit because the amount of heat radiated to space is larger than the amount of absorbed sunlight.
The net heating imbalance between the equator and poles drives an atmospheric and oceanic circulation that climate scientists describe as a “heat engine.” (In our everyday experience, we associate the word engine with automobiles, but to a scientist, an engine is any device or system that converts energy into motion.) The climate is an engine that uses heat energy to keep the atmosphere and ocean moving. Evaporation, convection, rainfall, winds, and ocean currents are all part of the Earth’s heat engine.
1 comment:
The energy radiated back to space from Arctic is getting a lot less because reflective sea ice is going away and because methane levels in atmosphere are going up. There is enough methane in near surface sediments on shallow Arctic sea floor and contained in hydrate to quantum leap Earth's thermodynamic balance to a higher temperature regime. 50 billion metric tons of methane could release quickly.
Post a Comment