The Northwest and Northeast Passages are open
Northwest Passage opens 4th year in a row
by Dr. Jeff Masters, Wunderblog, August 27, 2010
The Northwest Passage--the legendary shipping route through ice-choked Canadian waters at the top of the world--melted free of ice last week, and is now open for navigation, according to satellite mosaics available from the National Snow and Ice Data Center and The University of Illinois Cryosphere Today. This summer marks the fourth consecutive year -- and fourth time in recorded history -- that the fabled passage has opened for navigation. Over the past four days, warm temperatures and southerly winds over Siberia have also led to intermittent opening of the Northeast Passage, the shipping route along the north coast of Russia through the Arctic Ocean. It is now possible to completely circumnavigate the Arctic Ocean in ice-free waters, and this will probably be the case for at least a month. This year marks the third consecutive year -- and the third time in recorded history -- that both the Northwest Passage and Northeast Passage have melted free, according to the National Snow and Ice Data Center. The Northeast Passage opened for the first time in recorded history in 2005, and the Northwest Passage in 2007. It now appears that the opening of one or both of these northern passages is the new norm, and business interests are taking note--commercial shipping in the Arctic is on the increase, and there is increasing interest in oil drilling. The great polar explorers of past centuries would be astounded at how the Arctic has changed in the 21st century.
Figure 4. Arctic sea ice extent image for August 24, 2010, as compiled by The University of Illinois Cryosphere Today. The northern route (Western Parry Channel) through the Northwest Passage was completely clear of ice, as was the Northeast Passage. The southern route through the Northwest Passage was still partially blocked.
What caused the opening of the Northwest and Northeast Passages?
The remarkable thinning of Arctic sea ice in recent years has left behind a very thin layer of mostly 1-year old ice in the Arctic, highly vulnerable to rapid melting. As I describe in detail in wunderground's sea ice page, this thinning was mostly due to natural wind pattern in the 1990s, much warmer than average ocean waters invading the Arctic from both the Pacific and Atlantic Oceans, very warm air temperatures, and deposition of black soot from fires used to clear agricultural land in Europe and air pollution originating in industrialized regions of the Northern Hemisphere. This year, Canada experienced its warmest winter in history, and record warm temperatures were observed during spring over the Western Canadian Arctic. Spring 2010 was the warmest in the region since 1948; some regions of the Western Canadian Arctic were more than 6 °C (11 °F) above average. These warm conditions helped break the ice up early in the Northwest Passage. Warm conditions continued this summer over both the Northwest and Northeast Passages, with temperatures averaging 1-2 °C above average over the majority of the region. As observed in previous years, contributing to this year's melt was the presence of much warmer than average ocean waters invading the Arctic from both the Pacific and Atlantic Oceans, and the deposition of black soot on the ice, which absorbs sunlight and heats up the ice. Lack of sunshine and natural wind patterns this summer helped counteract the melting, though, compared to the record melt year of 2007. Still, 2010 is on track come in 2nd or 3rd place for the lowest summertime Arctic sea ice extent on record. The past six years have had the six lowest Arctic ice extents on record, and this summer's melting season took a huge toll on the amount of thick, multi-year old ice, according to the National Snow and Ice Data Center. Modeling results from the University of Washington Polar Science Center (Figure 5) suggest that the volume of Arctic sea ice is at a record low for this time of year. The loss of so much old, thick ice this year makes it increasing likely that Arctic sea ice will suffer a record retreat that surpasses 2007's, sometime in the next ten years. We are still on track to see the Arctic sea ice completely disappear in summer by 2030, as predicted by a number of Arctic sea ice experts.
Figure 5. Arctic sea ice volume as computed by the PIOMAS model of the University of Washington Polar Science Center.
When was the last time the Northwest and Northeast Passages melted free 3 consecutive years?
The first recorded attempt to find and sail the Northwest Passage occurred in 1497, and ended in failure. The thick ice choking the waterways thwarted all attempts at passage for the next four centuries. While we cannot say for certain the Northwest Passage did not open between 1497 and 1900, it is highly unlikely that a string of three consecutive summers where both the Northwest and Northeast Passage opened would have escaped the notice of early mariners and whalers, who were very active in northern waters. We can be sure the Northern Passages were never open between 1900-2005, as we have detailed ice edge records from ships (Walsh & Chapman, 2001). A very cold period dominated northern latitudes during the 1600s, 1700s, and 1800s, known as "The Little Ice Age", further arguing against an opening of the Northern Passages during those centuries. The Northern Passages may have been open at some period during the Medieval Warm Period, between 900 and 1300 AD. Temperatures in Europe were similar, though probably a little cooler, than present-day temperatures. However, the Medieval Warm Period warmth was not global, and it is questionable whether or not sections of the Northern Passages along the Alaskan, Canadian, and Russian shores shared in the warmth of the Medieval Warm Period. So, a better candidate for the last previous multi-year opening of the Northern Passages was the period 6,000-8,500 years ago, when the Earth's orbital variations brought more sunlight to the Arctic in summer than at present. Funder and Kjaer (2007) found extensive systems of wave generated beach ridges along the North Greenland coast that suggested the Arctic Ocean was ice-free in the summer for over 1,000 years during that period. Prior to that, the next likely time the Northern Passages were open was during the last inter-glacial period, 120,000 years ago. Arctic temperatures then were 2-3 °C higher than present-day temperatures, and sea levels were 4-6 meters higher. It is possible we'll know better soon. A new technique that examines organic compounds left behind in Arctic sediments by diatoms that live in sea ice give hope that a detailed record of sea ice extent extending back to the end of the Ice Age 12,000 years ago may be possible (Belt et al., 2007). The researchers are studying sediments along the Northwest Passage in hopes of being able to determine when the Passage was last open.
But Antarctic sea ice is at a record high!
Climate change contrarians like to diminish the importance of Arctic sea ice loss by pointing out that in recent years, Antarctic sea ice extent has hit several record highs, including in July of 2010. They fail to mention, though, the fact that ocean temperatures in the Antarctic sea ice region have warmed significantly in recent decades--and faster than the global average temperature rise! So how can sea ice increase when ocean temperatures are warming so dramatically? This topic is discussed in detail by one of my favorite bloggers, physicist John Cook over at skepticalscience.com. In his words:
"There are several contributing factors. One is the drop in ozone levels over Antarctica. The hole in the ozone layer above the South Pole has caused cooling in the stratosphere (Gillet 2003). A side-effect is a strengthening of the cyclonic winds that circle the Antarctic continent (Thompson 2002). The wind pushes sea ice around, creating areas of open water known as polynyas. More polynyas leads to increased sea ice production (Turner 2009).
Another contributor is changes in ocean circulation. The Southern Ocean consists of a layer of cold water near the surface and a layer of warmer water below. Water from the warmer layer rises up to the surface, melting sea ice. However, as air temperatures warm, the amount of rain and snowfall also increases. This freshens the surface waters, leading to a surface layer less dense than the saltier, warmer water below. The layers become more stratified and mix less. Less heat is transported upwards from the deeper, warmer layer. Hence less sea ice is melted (Zhang 2007). "
This counter-intuitive result shows how complicated our climate system is. Climate change contrarians are masters at obscuring the truth by taking counter-intuitive climate events like this out of context, and twisting them into a warped but believable non-scientific narrative. Lawmakers tend to hear a lot of these narratives, since the lobbying wings of the oil and gas industry spent $175 million last year to help convince Congress not to regulate their industry. This number does not include the tens of millions more spent by the U.S. Chamber of Commerce, National Association of Manufacturers, coal industry, and other business interests intent upon stymying legislation that might cut into profits of the oil, coal, and gas industry. For comparison, the lobbying money spent by environmental groups in 2009 was approximately $22.5 million. Spending for PR efforts aimed at influencing opinion on climate change issues probably has a similar disparity. This is a major reason why you may have heard, "Hey, Antarctic sea ice is increasing, so why worry about Arctic sea ice loss?"
Commentary
Diminishing the importance of Arctic sea ice loss by calling attention to Antarctic sea ice gain is like telling someone to ignore the fire smoldering in their attic, and instead go appreciate the coolness of the basement, because there is no fire there. Planet Earth's attic is on fire. This fire is almost certain to grow much worse. When the summertime Arctic sea ice starts melting completely a few years or decades hence, the Arctic will warm rapidly, potentially leading to large releases of methane gas stored in permafrost and in undersea "methane ice" deposits. Methane is 20-25 times more potent than CO2 at warming the climate, meaning that the fire in Earth's attic will inexorably spread to the rest of the globe. To deny that the fire exists, or that the fire is natural, or that the fire is too expensive to fight are all falsehoods. This fire requires our immediate and urgent attention. Volunteer efforts to fight the fire by burning less coal, oil, and gas are laudable, but insufficient. It's like trying to fight a 3-alarm blaze with a garden hose. Every time you reduce your use of oil, gas, or coal, you make the price of those fuels cheaper, encouraging someone else to burn them. Global warming will not slow down until Big Government puts a price on oil, coal and gas--a price that starts out low but increases every year. This can be done via emissions trading, a "fee and dividend" approach, or other means. People are rightfully mistrustful of the ability of Big Government to solve problems, but we don't have a choice. The alternative is to geoengineer our climate--an extremely risky solution. It is time to pay the big bucks and send out the fire engines, before the conflagration gets totally out of control. Consider the Great Russian Heat Wave of 2010 and the Pakistani floods of 2010 a warning. These sorts of extreme events will grow far more common in the decades to come, because of human-caused climate change.
Link: http://www.wunderground.com/blog/JeffMasters/comment.html?entrynum=1589
No comments:
Post a Comment