Tuesday, December 23, 2008

D. E. Becker et al., Greenland ice sheet outlet glacier front changes: comparison of year 2008 with past years

American Geophysical Union, Fall Meeting 2008, abstract #C11D-0538

Greenland ice sheet outlet glacier front changes: Comparison of year 2008 with past years


D. E. Becker, J. Box, and R. Benson (Byrd Polar Research Center, 1090 Carmack Rd, Columbus, OH 43210, U.S.A.)

Abstract

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) imagery are used to calculate inter-annual, end of summer, glacier front area changes at 10 major Greenland ice sheet outlets over the 2000-2008 period. To put the recent 8 end of summer net annual changes into a longer perspective, glacier front position information from the past century are also incorporated. The largest MODIS-era area changes are losses/retreats; found at the relatively large Petermann Gletscher, Zachariae Isstrom, and Jakobshavn Isbrae. The 2007-2008 net ice area losses were 63.4 sq. km, 21.5 sq. km, and 10.9 sq. km, respectively. Of the 10 largest Greenland glaciers surveyed, the total net cumulative area change from end of summer 2000 to 2008 is -536.6 sq km, that is, an area loss equivalent with 6.1 times the area of Manhattan Is. (87.5 sq km) in New York, USA. Ice front advances are evident in 2008; also at relatively large and productive (in terms of ice discharge) glaciers of Helheim (5.7 sq km), Store Gletscher (4.9 sq km), and Kangerdlugssuaq (3.4 sq km). The largest retreat in the 2000-2008 period was 54.2 sq km at Jakobshavn Isbrae between 2002 and 2003; associated with a floating tongue disintegration following a retreat that began in 2001 and has been associated with thinning until floatation is reached; followed by irreversible collapse. The Zachariae Isstrom pro-glacial floating ice shelf loss in 2008 appears to be part of an average ~20 sq km per year disintegration trend; with the exception of the year 2006 (6.2 sq km) advance. If the Zachariae Isstrom retreat continues, we are concerned the largest ice sheet ice stream that empties into Zachariae Isstrom will accelerate, the ice stream front freed of damming back stress, increasing the ice sheet mass budget deficit in ways that are poorly understood and could be surprisingly large. By approximating the width of the surveyed glacier frontal zones, we determine and present effective glacier normalized length (L') changes that also will be presented at the meeting. The narrow Ingia Isbrae advanced in L' the most in 2006-2007 by 9.2 km. Jakobshavn decreased in L' the most in 2002-2003 by 8.0 km. Petermann decreased in length the most in 2000-2001, that is, L' = -5.3 km and again by L' = -3.9 km in 2007-2008. Helheim Gl. retreated in 2004-2005 by L' = -4.6 km and advanced 2005-2006 by L' = 4.4 km. The 10 glacier average L' change from end of summer 2000 end of summer 2008 was 0.6 km. Results from a growing list of glaciers will be presented. We attempt to interpret the observed glacier changes using glaciological theory and regional climate observations.

Link to abstract: http://adsabs.harvard.edu/abs/2008AGUFM.C11D0538D

No comments:

Post a Comment